The Gompertz distribution and Maximum Likelihood Estimation of its parameters - a revision

نویسنده

  • Adam Lenart
چکیده

The Gompertz distribution is widely used to describe the distribution of adult deaths. Previous works concentrated on formulating approximate relationships to characterize it. However, using the generalized integro-exponential function Milgram (1985) exact formulas can be derived for its moment-generating function and central moments. Based on the exact central moments, higher accuracy approximations can be defined for them. In demographic or actuarial applications, maximum-likelihood estimation is often used to determine the parameters of the Gompertz distribution. By solving the maximum-likelihood estimates analytically, the dimension of the optimization problem can be reduced to one both in the case of discrete and continuous data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Beta Gompertz Geometric distribution: Mathematical Properties and Applications

‎In this paper‎, ‎a new five-parameter so-called Beta-Gompertz Geometric (BGG) distribution is introduced that can have a decreasing‎, ‎increasing‎, ‎and bathtub-shaped failure rate function depending on its parameters‎. ‎Some mathematical properties of the this distribution‎, ‎such as the density and hazard rate functions‎, ‎moments‎, ‎moment generating function‎, ‎R and Shannon entropy‎, ‎Bon...

متن کامل

A New Generalization of the Gompertz distribution

‎In this paper‎, ‎a new distribution of the three-parameter lifetime model called the Marshall-Olkin Gompertz is proposed on the basis of the Gompertz distribution‎. ‎It is a generalization of the Gompertz distribution having decreasing failure rate and can also be increasing and bathtub-shaped depending on its parameters‎. ‎The probability density function‎, ‎cumulative distribution function‎,...

متن کامل

Hyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods

‎In this paper‎, ‎a new probability distribution‎, ‎based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated‎. ‎The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function‎. ‎Based on the base log-logistics distribution‎, ‎we introduce a new di...

متن کامل

Estimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data

This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...

متن کامل

Application of Gompertz-Poisson Distribution in LifetimeTheory

Gompertz-Poisson distribution is a three-parameter lifetime distribution with increasing, decreasing, increasing-decreasing and unimodal shape failure rate function and a composition of Gompertz and Poisson distributions cut at zero point that in this paper estimated the parameters of the distribution by maximum likelihood method and in order to confirm the calculated estimates, based on random...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012